Test Plugin Match

Posted in: Uncategorized

QuickLaTeX

[latexpage]
At first, we sample $f(x)$ in the $N$ ($N$ is odd) equidistant points around $x^*$:
\[
   f_k = f(x_k),\: x_k = x^*+kh,\: k=-\frac{N-1}{2},\dots,\frac{N-1}{2}
\]
where \( $h$ \) is some step.
Then we interpolate points \( ${(x_k,f_k)}$ \) by polynomial
\begin{equation} \label{eq:poly}
   P_{N-1}(x)=\sum_{j=0}^{N-1}{a_jx^j}
\end{equation}
Its coefficients $\{a_j\}$ are found as a solution of system of linear equations:
\begin{equation} \label{eq:sys}
   \left\{ P_{N-1}(x_k) = f_k\right\},\quad k=-\frac{N-1}{2},\dots,\frac{N-1}{2}
\end{equation}
Here are references to existing equations: (\ref{eq:poly}), (\ref{eq:sys}).
Here is reference to non-existing equation (\ref{eq:unknown}).

MathJax Latex

\( \sum_{i=0}^n i^2 = \frac{(n^2+n)(2n+1)}{6} \)

\( {x^y}^z | x^{y^z} | x^{y^z} | x_i^2 | x_{i^2} $$\sum_{i=0}^n i^2 = \frac{(n^2+n)(2n+1)}{6}$$ \)

FINAL MathJax Latex

\(\sum_{2}^{1}\)

\(\frac{3}{4}\sqrt{34}\)

Easy WP LaTeX

[latex]E = mc^2[/latex]

\( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)

[latex]\int_0^\infty e^{-x^2} \, dx = \frac{\sqrt{\pi}}{2}[/latex]

WP Katex

[katex]E = mc^2[/katex]

[katex]\int_0^\infty e^{-x^2} \, dx = \frac{\sqrt{\pi}}{2}[/katex]

Youngwhan’s Simple Latex

[math]x^2+y^2[/math]

[latex]x = \frac{-b \pm \sqrt{b^2 – 4ac}}{2a}[/latex]

[latex]x^2 + y^2[/latex]

Others test visualmatheditor.equatheque.net

\sum{3\coprod_{1\sum\limits_{i=2\prod\limits_{i=0}^{n}{i} }^{n}{i} 3}{} } \sum\limits_{i=0}^{1}{2}

\sum_{2}^{2}

latexeditor.lagrida.com

\sqrt[1]{2}\sqrt{3}\prod_{3\lim_{1 \to 2} 5}^{}\frac{2 }{24} ^{3}{222\sum{34}^{}}

\sqrt[1]{2}\sqrt{3}\prod_{3\lim_{1 \to 2} 5}^{}\frac{2 }{24} ^{3}{222\sum{34}^{}}

### Contoh Rumus Matematika

Untuk menulis akar kuadrat dalam LaTeX, Anda bisa menggunakan sintaks berikut:

$$ \sqrt{a} $$

Untuk akar pangkat n, gunakan:

$$ \sqrt[n]{a} $$

Dan untuk menggabungkan akar dengan perkalian, Anda bisa menggunakan:

$$ \sqrt{a \times b} $$

atau

$$ \sqrt[n]{a \times b} $$

editor.codecogs.com

\tfrac{2}{3}\frac{1}{3}\sum_{4}^{5}

\frac{\partial^3 }{\partial x^4}